2000 Vol. 2, No. 23 3719-3721

Distant Functionalization via Incorporation of Thiophene Moieties in Electrophilic Reactions Promoted by Samarium Diiodide

Shyh-Ming Yang, Sandip Kumar Nandy, Anandakathir Robinson Selvakumar, and Jim-Min Fang*

Department of Chemistry, National Taiwan University, Taipei, Taiwan 106, Republic of China

Received September 21, 2000

ABSTRACT

$$\begin{array}{c} \text{CH}_3(\text{CH}_2)_7 & \text{H} \\ & \text{S} \\ & \text{Ii) SmI}_2 \\ & \text{Iii) Raney Ni} \\ & \text{HO} \\ & \text{CH}_3(\text{CH}_2)_7 & \text{CO}_2\text{Me} \\ \end{array}$$

an inhibitory agent of spore gemination

Methyl thiophene-2-carboxylate, methyl 3-(thien-2-yl)acrylate, and methyl 5,2'-bithiophene-2-carboxylate were utilized as the synthetic equivalents of pentanoate 5-anion, pentanoate 4,5-dianion, heptanoate 7-anion, and nonanoate-8,9-dianion. By the promotion of samarium diiodide, these thiophene-incorporating compounds reacted with aldehydes, ketones, and conjugated esters regioselectively at the thienyl rings. Long-chain esters with remote hydroxyl and carboxyl groups, including an antiarthritis agent, a shellac component, and an inhibitory agent of spore germination, were prepared after reductive desulfurization on Raney nickel.

Functionalization at the remote positions with respect to an activating group remains a challenging task in organic synthesis. We describe herein a new strategy by using 1a-c to generate the synthetic equivalents of the terminal anions and dianions of long-chain aliphatic esters.

We reported previously that methyl thiophene-2-carboxylate (1a) reacts with carbonyl compounds by the promotion of SmI₂ and HMPA.^{2,3} The reaction may involve a dienolate intermediate $\bf A$, which could undergo protonation at C-2 to give 2,5-dihydrothiophenes (e.g., $\bf 2a-g$) or react further with a second carbonyl compound to give 4,5-dihydrothiophenes (e.g., $\bf 5a-d$). Since dihydrothiophenes could undergo reductive desulfurization by using Raney nickel,⁴ methyl thiophene2-carboxylate thus served as an attractive mediator for the synthesis of distant functionalized pentanoate esters with

⁽¹⁾ For generation of Cl₃TiCH₂CH₂CO₂R and ClZnCH₂CH₂CO₂R as nucleophilic reagents, see: (a) Nakamura, E.; Kuwajima, I. *J. Am. Chem. Soc.* **1983**, *105*, 651. (b) Nakamura, E.; Kuwajima, I. *J. Am. Chem. Soc.* **1984**, *106*, 3368. The organo-copper reagent IZn(CN)Cu(CH₂)₃CO₂R has been used as an equivalent of butanoate 4-anion, see: (c) Knochel, P.; Yeh, M. C. P.; Berk, S. C.; Talbert, J. *J. Org. Chem.* **1988**, *53*, 2392. (d) Yeh, M. C.; Knochel, P.; Santa, L. *Tetrahedron Lett.* **1988**, *29*, 3887. (e) Lipshutz, B. H.; Wood, M. R.; Tirado, R. *J. Am. Chem. Soc.* **1995**, *117*, 6126.

⁽²⁾ Yang, S.-M.; Fang, J.-M. Tetrahedron Lett. 1997, 38, 1589.

⁽³⁾ Transfer of one electron from SmI₂ to methyl thiophene-2-carboxylate initiated the reaction sequence. The generated samarium-bound ketyl anion radical did not trap hydrogen atom or undergo acyloin coupling, presumbly because of the hindrance of the ligated HMPA molecules; see: (a) Hou, Z.; Yoshimura, T.; Wakatszuki, Y. J. Am. Chem. Soc. 1994, 116, 11169. (b) Shiue, J.-S.; Lin, C.-C.; Fang, J.-M. Tetrahedron Lett. 1993, 34, 335.

remote hydroxyl and carboxyl groups (e.g., 3a-g and 6a-d).

The coupling reactions were simply carried out by mixing thiophenecarboxylate 1a with appropriate electrophiles in a freshly prepared SmI₂/THF/HMPA solution. As shown in this study (Table 1), hydroxyalkylations with aldehydes and

Table 1. SmI₂-Promoted Coupling Reactions^a and Subsequent Reductive Desulfurizations on Raney Nickel

no.	substr	electrophiles	coupling products (% yield)	desulfrzn products (% yield) ^c
1	1a	4-CH ₃ C ₆ H ₄ CHO/H ⁺	2a (85%) ^b	3a (66%) ^c
2	1a	6-methoxy-2-naphthaldehyde/H+	2b (74%) ^b	3b (91%) ^c
3	1a	4-ClC ₆ H ₄ COMe/H ⁺	2c (74%) ^b	3c (64%) ^c
4	1a	$CH_3(CH_2)_4CHO/H^+$	2d (81%) ^b	3d (91%) ^c
5	1a	$CH_3(CH_2)_7CHO/H^+$	2e (73%) ^b	3e (90%) ^c
6	1a	4-MeOC ₆ H ₄ CH=CHCO ₂ Me/H ⁺	2f (55%) ^b	3f (87%) ^c
7	1a	MeCH=CHCO ₂ Me/H ⁺	2g (60%) ^b	3g (81%) ^c
8	1a	cyclohexanone/cyclohexanone	5a (91%) ^d	6a (80%)
9	1a	cyclopentanone/cyclopentanone	5b (57%) ^d	6b (81%)
10	1a	4-CH ₃ C ₆ H ₄ CHO/4-ClC ₆ H ₄ COMe	5c (63%) ^b	6c (73%) ^e
11	1a	4-CH ₃ C ₆ H ₄ COMe/4-CH ₃ C ₆ H ₄ COMe	5d (62%) ^b	6d (75%) ^f
12	1b	4-MeOC ₆ H ₄ CHO/H ⁺	7a (78%) ^b	8a (86%) ^c
13	1b	CH ₃ (CH ₂) ₇ CHO/H ⁺	7b (68%) ^b	8b (89%) ^c
14	1b	4-CH ₃ C ₆ H ₄ COMe/H ⁺	7c (69%) ^b	8c (62%) ^c
15	1b	4-MeOC ₆ H ₄ CH=CHCO ₂ Me/H ⁺	7d (70%) ^b	8d (83%) ^c
16	1c	cyclohexanone/cyclohexanone	10 (43%) ^b	11 (85%) ^c

^a The coupling reactions were generally conducted in SmI₂/THF/HMPA solution at 0 °C, except for the Michael reactions (entries 6, 7, and 15), which were conducted at −78 °C. For 1 mmol of substrate, 3.6 mmol of SmI₂ and 16 mmol of HMPA were used. ^b The coupling product was obtained as a mixture of diastereomers. ^c Reductive desulfurization of the isomeric mixture of coupling product gave a single product. ^d Compounds 5a and 5b with the 4,5-trans configuration were obtained. ^e The reductive desulfurization of (45*,5R*,1′S*,1″S*)-5c gave (4R*,6R*,1′S*)-6c. ^f The reductive desulfurization of (4S*,5R*,1′S*,1″S*)-5d gave (4R*,6S*,1′S*)-6d.

ketones and Michael additions with α,β -unsaturated esters were accomplished in highly regioselective manners. The possible self-coupling reactions⁵ of esters and carbonyl compounds were suppressed under such reaction conditions.

Although individual coupling product (**2a**—**g**) existed as a mixture of diastereomers, a single long-chain ester was obtained after removal of the sulfur atom (Scheme 1). For example, an antiarthritis agent **4b**, 6-hydroxy-6-(6-methoxynaphth-2-yl)hexanoic acid, 6 was prepared in an overall 67% yield by a three-step sequence: (i) coupling of **1a** with 6-methoxy-2-naphthaldehyde by the promotion of SmI₂, (ii)

Scheme 1

reductive desulfurization using Raney Ni in MeOH, and (iii) saponification using LiOH in aqueous THF. A shellac component **4e**, 6-hydroxytetradecanoic acid,⁷ was prepared in 66% yield from **1a** and nonanal by a similar procedure.

Saponification of **3a** and **3d** afforded the corresponding 6-hydroxyacids, which were subjected to lactonization by treatment with 1,1'-carbonyldiimidazole/DBU or *p*-TsOH to give 7-tolyl and 7-pentyloxepan-2-ones in 86% and 91% yields.

We also demonstrated the efficient use of methyl thiophene-2-carboxylate as an equivalent of pentanoate 4,5-dianion (entries 8-11). The double electrophilic reaction of 1a, followed by reductive desulfurization, provided a route for the generation of functionalized 1,4-diols such as 6a-d.

The methodology using SmI₂-promoted electrophilic reactions was easily extended to its higher vinylogous compounds

3720 Org. Lett., Vol. 2, No. 23, 2000

⁽⁴⁾ Reviews of desulfurization on Raney nickel: (a) Caubere, P.; Coutrot, P. In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Eds., Pergamon: Oxford, 1991; Vol. 8, pp 835–870. (b) Pettit, G. R.; van Tamelen, E. E. *Org. React.* 1962, 12, 356. (c) Gol'dfarb, Y. L.; Fabrichnyi, B. P.; Shalavina, I. F. *Tetrahedron* 1962, 18, 21. (d) Meyers, A. I. *Heterocycles in Organic Synthesis*; Wiley: New York, 1974.

⁽⁵⁾ On treatment with SmI₂, carbonyl compounds and conjugated esters could undergo reductive self-coupling reactions; see: (a) Namy, J. L.; Souppe, J.; Kagan, H. B. *Tetrahedron Lett.* **1983**, *24*, 765. (b) Inanaga, J.; Handa, Y.; Tabuchi, T.; Otsubo, K. *Tetrahedron Lett.* **1991**, *32*, 6557. (c) Fujita, Y.; Fukuzumi, S.; Otera, J. *Tetrahedron Lett.* **1997**, *38*, 2121. (d) Caberera, A.; Le Lagadec, R.; Sharma, P.; Arias, J. L.; Toscano, R. A.; Velasco, L.; Gavino, R.; Alvarez, C.; Salmon, M. *J. Chem. Soc., Perkin Trans. 1* **1998**, 3609.

⁽⁶⁾ Murray, W. V.; Wachter, M. P.; Kasper, A. M.; Argentieri, D. C.; Capetola, R. J.; Ritchie, D. M. Eur. J. Med. Chem. Chim. Ther. 1991, 26, 159.

⁽⁷⁾ Wadia, M. S.; Khurana, R. G.; Mhaskar, V. V.; Dev. S. *Tetrahedron* **1969**, *25*, 3841.

Scheme 2

1. i)
$$Sml_2/THF/HMPA$$

The second s

9b (an inhibitory agent of spore gemination)

7a/8a: $R^1 = 4\text{-MeOC}_6H_4$; $R^2 = H$ **7b/8b**: $R^1 = CH_3(CH_2)_7$; $R^2 = H$ **7c/8c**: $R^1 = 4\text{-CH}_3C_6H_4$; $R^2 = CH_3$ **7d/8d**: $Ar = 4\text{-MeOC}_6H_4$

such as 3-(thien-2-yl)acrylate **1b** (Scheme 2). The protocol featured an excellent regioselectivity wherein the incoming electrophile reacted exclusively at the C-5 position of the thiophene ring, giving **7a**—**d** after protonation. Thus 3-(thien-2-yl)acrylate played as an equivalent of heptanoate-7-anion to furnish long-chain esters **8a**—**d**. Our current method for the synthesis of methyl 8-hydroxyhexadecanoate⁸ (**8b**), an inhibitory agent of spore germination, appeared to have the advantage of simple operation, few steps, and high overall yield (61%), by comparison with the previous preparation⁸ with 8–12 steps in merely 10–12% yields.

Bithiophenecarboxylate **1c** could also be utilized as an equivalent of nonanoate-8,9-dianion (Scheme 3). Thus,

treatment of **1c** with cyclohexanone (2.5 equiv) in SmI₂/THF/HMPA, at 0 °C for 30 min and 25 °C for 3 h, afforded the C-8,9 double hydroxyalkylation products **10** (43%) accompanied by 25% recovery of **1c**. This reaction was somewhat complicated by side products **12** (10%), **13** (6%), and **14** (14%) derived from additions at C-3 or C-3′ of **1c**.

Stirring of **10** with Raney Ni in refluxing EtOH for 16 h furnished the long-chain ester **11** (85%). The ¹H NMR spectrum of **11** exhibited a vinyl proton at δ 4.83 as a doublet (J = 10.5 Hz).

Acknowledgment. We thank the National Science Council for financial support.

Supporting Information Available: Experimental procedures, physical and spectral data for new compounds, and ORTEP drawings of compounds **5a**, **5c**, **6d**, and **10**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL006628W

Org. Lett., Vol. 2, No. 23, **2000**

^{(8) (}a) Tulloch, A. P. *Can. J. Chem.* **1965**, *43*, 415. (b) Yamane, H.; Sato, Y.; Takahashi, N.; Takeno, K.; Furuya, M. *Agric. Biol. Chem.* **1980**, *44*, 1697. (c) Masaoka, Y.; Sakakibara, M.; Mori, K. *Agric. Biol. Chem.* **1982**, *46*, 2319. (d) Sugai, T.; Mori, K. *Agric. Biol. Chem.* **1984**, *48*, 2155.