Distant Functionalization via Incorporation of Thiophene Moieties in Electrophilic Reactions Promoted by Samarium Diiodide

Shyh-Ming Yang, Sandip Kumar Nandy, Anandakathir Robinson Selvakumar, and Jim-Min Fang*

Department of Chemistry, National Taiwan University, *Taipei, Taiwan 106, Republic of China*

Received September 21, 2000

Methyl thiophene-2-carboxylate, methyl 3-(thien-2-yl)acrylate, and methyl 5,2′**-bithiophene-2-carboxylate were utilized as the synthetic equivalents of pentanoate 5-anion, pentanoate 4,5-dianion, heptanoate 7-anion, and nonanoate-8,9-dianion. By the promotion of samarium diiodide, these thiophene-incorporating compounds reacted with aldehydes, ketones, and conjugated esters regioselectively at the thienyl rings. Long-chain esters with remote hydroxyl and carboxyl groups, including an antiarthritis agent, a shellac component, and an inhibitory agent of spore germination, were prepared after reductive desulfurization on Raney nickel.**

Functionalization at the remote positions with respect to an activating group remains a challenging task in organic synthesis.¹ We describe herein a new strategy by using $1a-c$ to generate the synthetic equivalents of the terminal anions and dianions of long-chain aliphatic esters.

We reported previously that methyl thiophene-2-carboxylate (**1a**) reacts with carbonyl compounds by the promotion of $SmI₂$ and $HMPA^{2,3}$. The reaction may involve a dienolate intermediate **A**, which could undergo protonation at C-2 to give 2,5-dihydrothiophenes (e.g., **2a**-**g**) or react further with a second carbonyl compound to give 4,5-dihydrothiophenes (e.g., **5a**-**d**). Since dihydrothiophenes could undergo reductive desulfurization by using Raney nickel,⁴ methyl thiophene-2-carboxylate thus served as an attractive mediator for the synthesis of distant functionalized pentanoate esters with

(b) Shiue, J.-S.; Lin, C.-C.; Fang, J.-M. *Tetrahedron Lett*. **1993**, *34*, 335.

⁽¹⁾ For generation of $Cl_3TiCH_2CH_2CO_2R$ and $ClZnCH_2CH_2CO_2R$ as nucleophilic reagents, see: (a) Nakamura, E.; Kuwajima, I. *J*. *Am*. *Chem*. *Soc*. **1983**, *105*, 651. (b) Nakamura, E.; Kuwajima, I. *J*. *Am*. *Chem*. *Soc*. **1984**, 106 , 3368. The organo-copper reagent $IZn(CN)Cu(CH₂)₃CO₂R$ has been used as an equivalent of butanoate 4-anion, see: (c) Knochel, P.; Yeh, M. C. P.; Berk, S. C.; Talbert, J. *J*. *Org*. *Chem*. **1988**, *53*, 2392. (d) Yeh, M. C.; Knochel, P.; Santa, L. *Tetrahedron Lett*. **1988**, *29*, 3887. (e) Lipshutz, B. H.; Wood, M. R.; Tirado, R. *J*. *Am*. *Chem*. *Soc*. **1995**, *117*, 6126. (2) Yang, S.-M.; Fang, J.-M. *Tetrahedron Lett*. **1997**, *38*, 1589.

⁽³⁾ Transfer of one electron from SmI2 to methyl thiophene-2-carboxylate initiated the reaction sequence. The generated samarium-bound ketyl anion radical did not trap hydrogen atom or undergo acyloin coupling, presumbly because of the hindrance of the ligated HMPA molecules; see: (a) Hou, Z.; Yoshimura, T.; Wakatszuki, Y. *J*. *Am*. *Chem*. *Soc*. **1994**, *116*, 11169.

remote hydroxyl and carboxyl groups (e.g., **3a**-**^g** and **6ad**).

The coupling reactions were simply carried out by mixing thiophenecarboxylate **1a** with appropriate electrophiles in a freshly prepared SmI2/THF/HMPA solution. As shown in this study (Table 1), hydroxyalkylations with aldehydes and

Table 1. SmI₂-Promoted Coupling Reactions^{*a*} and Subsequent Reductive Desulfurizations on Raney Nickel

	no. substr	electrophiles	coupling products (% yield)	desulfrzn products (% yield) ^{c}
1	1a	4 -CH ₃ C ₆ H ₄ CHO/H ⁺	2a $(85\%)^b$ 3a $(66\%)^c$	
2	1a	6-methoxy-2-naphthaldehyde/ H^+	2b $(74\%)^b$	3b $(91\%)c$
3	1a	4 -ClC ₆ H ₄ COMe/H ⁺	2c $(74%)^b$	3c $(64%)^c$
4	1a	$CH3(CH2)4CHO/H+$	2d $(81\%)^b$ 3d $(91\%)^c$	
5	1a	$CH3(CH2)7CHO/H+$	2e $(73\%)^b$ 3e $(90\%)^c$	
6	1a	4-MeOC ₆ H ₄ CH=CHCO ₂ Me/H ⁺		2f $(55\%)^b$ 3f $(87\%)^c$
7	1a	$MeCH=CHCO2Me/H+$	$2g(60\%)$ ^b $3g(81\%)$ ^c	
8	1a	cyclohexanone/cyclohexanone	5a $(91\%)^d$ 6a (80%)	
9	1a	cyclopentanone/cyclopentanone	5b $(57\%)^d$ 6b (81%)	
10	1a	$4-CH_3C_6H_4CHO/4-ClC_6H_4COMe$	5c $(63%)^b$	6c $(73%)^e$
11	1a	4 -CH ₃ C ₆ H ₄ COMe/4-CH ₃ C ₆ H ₄ COMe	5d $(62\%)^b$ 6d $(75\%)^f$	
12	1b	$4-MeOC6H4CHO/H+$	7a (78%) ^b 8a (86%) ^c	
13	1b	$CH_3(CH_2)_7CHO/H^+$	7b $(68\%)^b$ 8b $(89\%)^c$	
14	1b	4 -CH ₃ C ₆ H ₄ COMe/H ⁺	7c $(69\%)^b$	8c $(62\%)^c$
15	1b	$4-MeOC6H4CH=CHCO2Me/H+$	7d $(70\%)^b$ 8d $(83\%)^c$	
16	1c	cyclohexanone/cyclohexanone		10 $(43\%)^b$ 11 $(85\%)^c$

^a The coupling reactions were generally conducted in SmI2/THF/HMPA solution at 0 °C, except for the Michael reactions (entries 6, 7, and 15), which were conducted at -78 °C. For 1 mmol of substrate, 3.6 mmol of which were conducted at -78 °C. For 1 mmol of substrate, 3.6 mmol of SmI₂ and 16 mmol of HMPA were used. ^{*b*} The coupling product was obtained as a mixture of diastereomers. *^c* Reductive desulfurization of the isomeric mixture of coupling product gave a single product. *^d* Compounds **5a** and **5b** with the 4,5-*trans* configuration were obtained. *^e* The reductive desulfurization of (4*S**,5*R**,1′*S**,1′′*S**)-**5c** gave (4*R**,6*R**,1′*S**)-**6c**. *^f* The reductive desulfurization of (4*S**,5*R**,1′*S**,1′′*R**)-**5d** gave (4*R**,6*S**,1′*S**)- **6d**.

ketones and Michael additions with α , β -unsaturated esters were accomplished in highly regioselective manners. The possible self-coupling reactions⁵ of esters and carbonyl compounds were suppressed under such reaction conditions.

Although individual coupling product (**2a**-**g**) existed as a mixture of diastereomers, a single long-chain ester was obtained after removal of the sulfur atom (Scheme 1). For example, an antiarthritis agent **4b**, 6-hydroxy-6-(6-methoxynaphth-2-yl)hexanoic acid,⁶ was prepared in an overall 67% yield by a three-step sequence: (i) coupling of **1a** with 6-methoxy-2-naphthaldehyde by the promotion of $SmI₂$, (ii)

reductive desulfurization using Raney Ni in MeOH, and (iii) saponification using LiOH in aqueous THF. A shellac component **4e**, 6-hydroxytetradecanoic acid,⁷ was prepared in 66% yield from **1a** and nonanal by a similar procedure.

Saponification of **3a** and **3d** afforded the corresponding 6-hydroxyacids, which were subjected to lactonization by treatment with 1,1′-carbonyldiimidazole/DBU or *p*-TsOH to give 7-tolyl and 7-pentyloxepan-2-ones in 86% and 91% yields.

We also demonstrated the efficient use of methyl thiophene-2-carboxylate as an equivalent of pentanoate 4,5-dianion (entries 8-11). The double electrophilic reaction of **1a**, followed by reductive desulfurization, provided a route for the generation of functionalized 1,4-diols such as $6a-d$.

The methodology using SmI_2 -promoted electrophilic reactions was easily extended to its higher vinylogous compounds

⁽⁴⁾ Reviews of desulfurization on Raney nickel: (a) Caubere, P.; Coutrot, P. In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Eds., Pergamon: Oxford, 1991; Vol. 8, pp 835-870. (b) Pettit, G. R.; van Tamelen, E. E. *Org. React.* **1962**, *12*, 356. (c) Gol'dfarb, Y. L.; Fabrichnyi, B. P.; Shalavina, I. F. *Tetrahedron* **1962**, *18*, 21. (d) Meyers, A. I. *Heterocycles in Organic Synthesis*; Wiley: New York, 1974.

⁽⁵⁾ On treatment with SmI2, carbonyl compounds and conjugated esters could undergo reductive self-coupling reactions; see: (a) Namy, J. L.; Souppe, J.; Kagan, H. B. *Tetrahedron Lett*. **1983**, *24*, 765. (b) Inanaga, J.; Handa, Y.; Tabuchi, T.; Otsubo, K. *Tetrahedron Lett*. **1991**, *32*, 6557. (c) Fujita, Y.; Fukuzumi, S.; Otera, J. *Tetrahedron Lett*. **1997**, *38*, 2121. (d) Caberera, A.; Le Lagadec, R.; Sharma, P.; Arias, J. L.; Toscano, R. A.; Velasco, L.; Gavino, R.; Alvarez, C.; Salmon, M. *J*. *Chem*. *Soc*., *Perkin Trans*. *1* **1998**, 3609.

⁽⁶⁾ Murray, W. V.; Wachter, M. P.; Kasper, A. M.; Argentieri, D. C.; Capetola, R. J.; Ritchie, D. M. *Eur*. *J*. *Med*. *Chem*. *Chim*. *Ther*. **1991**, *26*, 159.

⁽⁷⁾ Wadia, M. S.; Khurana, R. G.; Mhaskar, V. V.; Dev. S. *Tetrahedron* **1969**, *25*, 3841.

such as 3-(thien-2-yl)acrylate **1b** (Scheme 2). The protocol featured an excellent regioselectivity wherein the incoming electrophile reacted exclusively at the C-5 position of the thiophene ring, giving **7a**-**^d** after protonation. Thus 3-(thien-2-yl)acrylate played as an equivalent of heptanoate-7-anion to furnish long-chain esters **8a**-**d**. Our current method for the synthesis of methyl 8-hydroxyhexadecanoate8 (**8b**), an inhibitory agent of spore germination, appeared to have the advantage of simple operation, few steps, and high overall yield (61%) , by comparison with the previous preparation⁸ with $8-12$ steps in merely $10-12\%$ yields.

Bithiophenecarboxylate **1c** could also be utilized as an equivalent of nonanoate-8,9-dianion (Scheme 3). Thus,

treatment of $1c$ with cyclohexanone (2.5 equiv) in $SmI₂/THF/$ HMPA, at 0 °C for 30 min and 25 °C for 3 h, afforded the C-8,9 double hydroxyalkylation products **10** (43%) accompanied by 25% recovery of **1c**. This reaction was somewhat complicated by side products **12** (10%), **13** (6%), and **14** (14%) derived from additions at C-3 or C-3′ of **1c**.

Stirring of **10** with Raney Ni in refluxing EtOH for 16 h furnished the long-chain ester 11 (85%). The ¹H NMR spectrum of **11** exhibited a vinyl proton at *δ* 4.83 as a doublet $(J = 10.5 \text{ Hz}).$

Acknowledgment. We thank the National Science Council for financial support.

Supporting Information Available: Experimental procedures, physical and spectral data for new compounds, and ORTEP drawings of compounds **5a**, **5c**, **6d**, and **10**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL006628W

^{(8) (}a) Tulloch, A. P. *Can*. *J*. *Chem*. **1965**, *43*, 415. (b) Yamane, H.; Sato, Y.; Takahashi, N.; Takeno, K.; Furuya, M. *Agric*. *Biol*. *Chem*. **1980**, *44*, 1697. (c) Masaoka, Y.; Sakakibara, M.; Mori, K. *Agric*. *Biol*. *Chem*. **1982**, *46*, 2319. (d) Sugai, T.; Mori, K. *Agric*. *Biol*. *Chem*. **1984**, *48*, 2155.